Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Hemato ; 3(1):111, 2022.
Article in English | ProQuest Central | ID: covidwho-1818069

ABSTRACT

Background. Hypercoagulable state and endothelial cell activation are common alterations in patients with COVID-19. Nevertheless, the hypothesis of persistent hypercoagulability and endothelial cell activation following recovery from COVID-19 remains an unresolved issue. Objectives. To investigate the persistence of endothelial cell activation and hypercoagulability after recovery from COVID-19. Patients/Methods. COVID-19 survivors (n = 208) and 30 healthy individuals were enrolled in this study. The following biomarkers were measured: procoagulant phospholipid-dependent clotting time (PPL-ct), D-Dimer, fibrin monomers (FM), free Tissue factor pathway inhibitor (free-TFP)I, heparinase, and soluble thrombomodulin (sTM). Antibodies against SARS-CoV-2 (IgG and IgA) were also measured. Results. The median interval between symptom onset and screening for SARS-CoV-2 antibodies was 62 days (IQR = 22 days). Survivors showed significantly higher levels of D-Dimers, FM, TFPI, and heparanase as compared to that of the control group. Survivors had significantly shorter PPL-ct. Elevated D-dimer was associated with older age. Elevated FM was associated with female gender. Elevated heparanase was independently associated with male gender. Decreased Procoag-PPL clotting time was associated with female gender. One out of four of COVID-19 survivors showed increase at least one biomarker of endothelial cell activation or hypercoagulability. Conclusions. Two months after onset of COVID-19, a significant activation of endothelial cells and in vivo thrombin generation persists in at least one out of four survivors of COVID-19. The clinical relevance of these biomarkers in the diagnosis and follow-up of patients with long COVID-19 merits to be evaluated in a prospective clinical study.

2.
Front Endocrinol (Lausanne) ; 13: 840668, 2022.
Article in English | MEDLINE | ID: covidwho-1793031

ABSTRACT

Background: This is the first study, that aimed: a) to compare immune response, namely the kinetics of neutralizing antibodies (Nabs), after vaccination with BNT162b2 mRNA vaccine (Comirnaty, Pfizer/BioNTech) between patients with autoimmune thyroiditis and controls, and b) to investigate changes in thyroid function in healthy subjects with no history of thyroid dysfunction before and after vaccination with BNT162b2 mRNA vaccine (Comirnaty, Pfizer/BioNTech). Methods: The entire study consisted of two sub-studies. In the first sub-study, NAbs levels after BNT162b2 mRNA vaccination were compared between 56 patients with autoimmune thyroiditis and 56 age and gender-matched healthy controls from the day of the first dose until a period of up to three months after the second dose. In the second sub-study, thyroid hormones (T3, T4, TSH) and thyroid auto-antibodies levels (anti-TG, anti-TPO) of 72 healthy subjects with no history of thyroid disease were examined before (D1) and one month after completion of the second dose (D50). Results: Among patients with autoimmune thyroiditis, the median neutralizing inhibition on D22, immediately before second dose, was 62.5%. One month later (D50), values increased to 96.7%, while three months after the second dose NAbs titers remained almost the same (94.5%). In the healthy group, median NAbs levels at D22 were 53.6%. On D50 the median inhibition values increased to 95.1%, while after three months they were 89.2%. The statistical analysis did not show significant differences between two groups (p-values 0.164, 0.390, 0.105 for D22, D50 and three months). Regarding changes in thyroid function, the mean value for T4 before vaccination was 89.797 nmol/L and one month after the second dose was 89.11 nmol/L (p-value=0.649). On D1 the mean T3 value was 1.464 nmol/L, which dropped to 1.389 nmol/L on D50 (p-value = 0.004). For TSH, mean levels were 2.064 mIU/ml on D1 and fell to 1.840 mIU/ml one month after the second dose (p-value=0.037). Despite decrease, all thyroid hormone levels remained within the normal range. No changes were found for anti-TPO or anti-TG. Conclusions: This study provided evidence that patients with autoimmune thyroiditis present similar immunological response to COVID-19 BNT162b2 mRNA vaccine (Comirnaty, Pfizer/BioNTech) with healthy subjects, while vaccination may affect thyroid function.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Thyroiditis, Autoimmune/immunology , Adult , Autoantibodies/blood , Autoantibodies/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/genetics , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Female , Follow-Up Studies , Healthy Volunteers , Humans , Male , Middle Aged , SARS-CoV-2/genetics , Thyroid Gland/metabolism , Thyroid Hormones/blood , Thyroid Hormones/metabolism , Thyroiditis, Autoimmune/metabolism , Vaccination
3.
Cells ; 11(7)2022 04 06.
Article in English | MEDLINE | ID: covidwho-1776140

ABSTRACT

Vaccination is currently the most effective strategy for the mitigation of the COVID-19 pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs) against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune response after vaccination remain poorly understood, while there is significant heterogeneity in the immune response among individuals. Metabolomics have often been used to provide a deeper understanding of immune cell responses, but in the context of COVID-19 vaccination such data are scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics were used to provide insights based on the baseline metabolic profile and metabolic alterations induced after mRNA vaccination in paired blood plasma samples collected and analysed before the first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before the second dose, two groups, "low" and "high" responders, were defined. Distinct plasma metabolic profiles were observed in relation to the level of immune response, highlighting the role of amino acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore, levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of response and severity of inflammation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Biomarkers , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Metabolomics , Pandemics , Plasma , SARS-CoV-2 , Vaccination
6.
Cell Rep ; 36(6): 109504, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1491797

ABSTRACT

Early responses to vaccination are important for shaping both humoral and cellular protective immunity. Dissecting innate vaccine signatures may predict immunogenicity to help optimize the efficacy of mRNA and other vaccine strategies. Here, we characterize the cytokine and chemokine responses to the 1st and 2nd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in antigen-naive and in previously coronavirus disease 2019 (COVID-19)-infected individuals (NCT04743388). Transient increases in interleukin-15 (IL-15) and interferon gamma (IFN-γ) levels early after boost correlate with Spike antibody levels, supporting their use as biomarkers of effective humoral immunity development in response to vaccination. We identify a systemic signature including increases in IL-15, IFN-γ, and IP-10/CXCL10 after the 1st vaccination, which were enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the 2nd vaccination. In previously COVID-19-infected individuals, a single vaccination results in both strong cytokine induction and antibody titers similar to the ones observed upon booster vaccination in antigen-naive individuals, a result with potential implication for future public health recommendations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Chemokine CXCL10/immunology , Interferon-gamma/immunology , Interleukin-15/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/metabolism , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunity/immunology , Male , Middle Aged , RNA, Messenger/immunology
7.
BMC Med ; 19(1): 208, 2021 08 23.
Article in English | MEDLINE | ID: covidwho-1455966

ABSTRACT

BACKGROUND: Coronavirus SARS-CoV-2, the causative agent of COVID-19, has caused a still evolving global pandemic. Given the worldwide vaccination campaign, the understanding of the vaccine-induced versus COVID-19-induced immunity will contribute to adjusting vaccine dosing strategies and speeding-up vaccination efforts. METHODS: Anti-spike-RBD IgGs and neutralizing antibodies (NAbs) titers were measured in BNT162b2 mRNA vaccinated participants (n = 250); we also investigated humoral and cellular immune responses in vaccinated individuals (n = 21) of this cohort 5 months post-vaccination and assayed NAbs levels in COVID-19 hospitalized patients (n = 60) with moderate or severe disease, as well as in COVID-19 recovered patients (n = 34). RESULTS: We found that one (boosting) dose of the BNT162b2 vaccine triggers robust immune (i.e., anti-spike-RBD IgGs and NAbs) responses in COVID-19 convalescent healthy recipients, while naïve recipients require both priming and boosting shots to acquire high antibody titers. Severe COVID-19 triggers an earlier and more intense (versus moderate disease) immune response in hospitalized patients; in all cases, however, antibody titers remain at high levels in COVID-19 recovered patients. Although virus infection promotes an earlier and more intense, versus priming vaccination, immune response, boosting vaccination induces antibody titers significantly higher and likely more durable versus COVID-19. In support, high anti-spike-RBD IgGs/NAbs titers along with spike (vaccine encoded antigen) specific T cell clones were found in the serum and peripheral blood mononuclear cells, respectively, of vaccinated individuals 5 months post-vaccination. CONCLUSIONS: These findings support vaccination efficacy, also suggesting that vaccination likely offers more protection than natural infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/therapeutic use , COVID-19 , Spike Glycoprotein, Coronavirus/immunology , BNT162 Vaccine , COVID-19/prevention & control , COVID-19/therapy , Humans , Kinetics , Leukocytes, Mononuclear , RNA, Messenger , SARS-CoV-2
10.
Microorganisms ; 8(12)2020 Nov 28.
Article in English | MEDLINE | ID: covidwho-948911

ABSTRACT

We evaluated the antibody responses in 259 potential convalescent plasma donors for Covid-19 patients. Different assays were used: a commercial ELISA detecting antibodies against the recombinant spike protein (S1); a multiplex assay detecting total and specific antibody isotypes against three SARS-CoV-2 antigens (S1, basic nucleocapsid (N) protein and receptor-binding domain (RBD)); and an in-house ELISA detecting antibodies to complete spike, RBD and N in 60 of these donors. Neutralizing antibodies (NAb) were also evaluated in these 60 donors. Analyzed samples were collected at a median time of 62 (14-104) days from the day of first symptoms or positive PCR (for asymptomatic patients). Anti-SARS-CoV-2 antibodies were detected in 88% and 87.8% of donors using the ELISA and the multiplex assay, respectively. The multivariate analysis showed that age ≥50 years (p < 0.001) and need for hospitalization (p < 0.001) correlated with higher antibody titers, while asymptomatic status (p < 0.001) and testing >60 days after symptom onset (p = 0.001) correlated with lower titers. Interestingly, pseudotype virus-neutralizing antibodies (PsNAbs) significantly correlated with spike and with RBD antibodies by ELISA. Sera with high PsNAb also showed a strong ability to neutralize active SARS-CoV-2 virus, with hospitalized patients showing higher titers. Therefore, convalescent plasma donors can be selected based on the presence of high RBD antibody titers.

SELECTION OF CITATIONS
SEARCH DETAIL